Learning Higher-Order Graph Structure with Features by Structure Penalty
نویسندگان
چکیده
In discrete undirected graphical models, the conditional independence of node labels Y is specified by the graph structure. We study the case where there is another input random vector X (e.g. observed features) such that the distribution P (Y | X) is determined by functions of X that characterize the (higher-order) interactions among the Y ’s. The main contribution of this paper is to learn the graph structure and the functions conditioned on X at the same time. We prove that discrete undirected graphical models with feature X are equivalent to multivariate discrete models. The reparameterization of the potential functions in graphical models by conditional log odds ratios of the latter offers advantages in representation of the conditional independence structure. The functional spaces can be flexibly determined by kernels. Additionally, we impose a Structure Lasso (SLasso) penalty on groups of functions to learn the graph structure. These groups with overlaps are designed to enforce hierarchical function selection. In this way, we are able to shrink higher order interactions to obtain a sparse graph structure.
منابع مشابه
Learning Undirected Graphical Models with Structure Penalty
In undirected graphical models, learning the graph structure and learning the functions that relate the predictive variables (features) to the responses given the structure are two topics that have been widely investigated in machine learning and statistics. Learning graphical models in two stages will have problems because graph structure may change after considering the features. The main con...
متن کاملیادگیری نیمه نظارتی کرنل مرکب با استفاده از تکنیکهای یادگیری معیار فاصله
Distance metric has a key role in many machine learning and computer vision algorithms so that choosing an appropriate distance metric has a direct effect on the performance of such algorithms. Recently, distance metric learning using labeled data or other available supervisory information has become a very active research area in machine learning applications. Studies in this area have shown t...
متن کاملUsing an Evaluator Fixed Structure Learning Automata in Sampling of Social Networks
Social networks are streaming, diverse and include a wide range of edges so that continuously evolves over time and formed by the activities among users (such as tweets, emails, etc.), where each activity among its users, adds an edge to the network graph. Despite their popularities, the dynamicity and large size of most social networks make it difficult or impossible to study the entire networ...
متن کاملAn Introduction to Inference and Learning in Bayesian Networks
Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...
متن کاملThe Relationship of Cognitive and Meta-Cognitive Learning Strategies, Perceived Classroom Goal Structure, and Spiritual Intelligence with Academic Achievement among Nursing Students
Introduction: Academic achievement is affected by several variables. They may include cognitive and metacognitive learning strategies, perceived classroom goal structure, and spiritual intelligence. This study aimed to examine the relationship of cognitive and metacognitive learning strategies, perceived classroom goal structure, and spiritual intelligence with academic achievement among nursin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011